

INSTRUCTOR Assist. Prof. Dr. İlkay Kalay

Office: N-B115 E-mail: ikalay@cankaya.edu.tr Office Hours: Monday 11:20-12:10 / Wednesday 13:20-14:10*

*Use e-mails as much as possible out of office hours

SCHEDULE Lecture: Tuesday, 14:20-16:10 Thursday, 11:20-12:10

COURSE DESCRIPTION

This course is a three-credit course emphasizing diffusion from phenomenological and atomistic approach, precipitation, free energy-composition diagrams, precipitation transformations, solid-state nucleation, precipitation kinetics, coarsening, eutectoid transformation and discontinuous precipitation, martensitic transformations, crystallography, thermodynamics and types of martensites, bainite transformation.

ANNOUNCEMENTS

Check course website, http://mse409.cankaya.edu.tr/ frequently for announcements about the course, lecture notes, laboratory manuals, homework assignments and etc.

TEXTBOOKS

- 1. J. D. Verhoven, Fundamentals of Physical Metallurgy, John Wiley and Sons, 1975.
- 2. D.A.Porter, K.E.Easterling, M. Sherif, Phase Transformations in Metals and Alloys, Third Edition, Van Nostrand Reinhold International, 2009.

REFERENCE BOOK

1. Robert E Reed-Hill, R. Abbaschian, Physical Metallurgy Principles, R E Reed-Hill/Abbaschian, 1991.

GRADING

 Midterm I
 25 %

 Midterm II
 25 %

 Homework +Quiz
 10 %

 Final Examination
 40 %

 TOTAL
 100 %*

COURSE OUTLINE

Week	Topics Covered
1	Introdution
2	Diffusion: Phenomenological and atomistic approach Diffusion_Substitutional Diffusion, Driving force and Mobility, Easy path Diffusion
3	Diffusion: Phenomenological and atomistic approach Diffusion_Fick's laws, Steady state diffusion
4	Diffusion: Phenomenological and atomistic approach Diffusion_Nonsteady state diffusion;Carburizing
5	Diffusion: Phenomenological and atomistic approach Mechanisms of substitutional and interstitial diffusion, Temperature dependence
6	Diffusion controlled growth (Diffusional Transformations in Solids) Homogeneous and Heterogeneous Nucleation
7	Diffusion controlled growth (Precipitate Growth: Plate - like precipitates)
8	Diffusion controlled growth (Pearlite Growth) and TTT diagrams
9	Precipitation from a Supersaturated Solid Solution Coarsening of precipitates
10	Diffusion controlled growth(Single Phase Growth; Equiaxed , Plate - like precipitates)
11	Diffusion controlled growth (Eutectoid Transformation; Morphology, Nucleation)
12	Diffusion controlled growth (Pearlite Growth) and TTT diagrams
13	Martensitic Transformations (Crystallography of Twinning; Crystallography of Martensitic Transformations)
14	Martensitic Transformations(Thermodynamics of Martensitic Transformations) Some Characteristics of Martensitic Transformations and bainite transformations

Attendance: Minimum of 70 % attendance in class is mandatory.

^{*}Minimum of 70 % attendance in class is mandatory.